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Abstract. The determination of the critical point of theq-state Potts model on the Kagomé
lattices has been an outstanding unsolved problem. Here we study this problem by regarding
the Potts model as generating correlated bond percolations. By applying a combination of
Monte Carlo renormalization group and finite-size scaling analyses to the percolation problem,
numerical estimates with an accuracy of 0.01% are obtained for the Kagomé critical point for
q = 1, 2, 3, 4. Our results forq = 1 are consistent with a recent highly accurate numerical
estimate by Ziff and Suding, and results forq = 2 agree with the known exact result within
the numerical accuracy. Compared with results obtained in a recent series analysis by Jensen
et al, our numbers differ from theirs slightly forq = 3, and agree with theirs with a slightly
better accuracy forq = 4. Our numbers also confirm that a conjecture due to Wu is extremely
accurate.

1. Introduction

The q-state Potts model [1] is related to many interesting problems in mathematics and
physics [2–6]. Particularly, Kasteleyn and Fortuin [2, 3] related the Potts model to a random
cluster model which, in the limit ofq → 1, describes the problem of bond percolations.
For generalq, the random cluster model can also be interpreted as generating correlated
bond percolations [6–8].

Consider a lattice, or more generally a graph,G consisting ofN sites andB edges.
Let the edges ofG be covered by bonds in random, and associate weightsp and 1− p,
respectively, to the covered and open edges. We shall refer top as the bond occupation
(covering) probability. The bond coverings ofG form subgraphsG′ ⊆ G. Two sites belong
to a cluster if they are connected via a sequence of covering bonds. Letb(G′) andn(G′)
be, respectively, the numbers of bonds and clusters, including isolated points, in a subgraph
G′. To eachG′ we associate a weight

π(G′;p, q) = pb(G′)(1− p)B−b(G′)qn(G′). (1)

The Potts model partition function can then be written as

Z(G;p, q) =
∑
G′⊆G

π(G′;p, q) (2)

wherep = 1− e−K , K = J/kBT , with J being the coupling between Potts spins.
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Writing the partition function of the Potts model in the form of (1) and (2), one can regard
Z−1π(G′;p, q) as the probability of occurrence of the subgraphG′, and the formulation
can be interpreted as that of a correlated bond percolation [6]. The criticality in the Potts
model reflects the fact that the thermodynamic limit of the per-site free energy

f (p, q) = lim
N→∞

1

N
lnZ(G;p, q) (3)

becomes singular at a critical probabilityp = pc. This formulation offers an alternate way
of describing the critical point of the Potts model in terms of the critical probabilitypc for
the bond correlated percolation [6].

The exact critical probabilitypc is known only for the square, triangular, and honeycomb
lattices [9]; there has been no exact determination of the Potts critical point for other lattices.
Particularly, the determination of the critical point for the Kagomé lattice has proven to be
extremely elusive. Two conjectures have been proposed on the exact location of the critical
point [10, 11], and an attempt has been made to test the two conjectures using simple Monte
Carlo simulations [12]. A rigorous lower bound onpc has also been established [13]. More
recently, Ziff and Suding [14] determined theq = 1 critical point to an extremely high
degree of accuracy by using highly precise Monte Carlo simulations, and Jensenet al [15]
studied theq = 3, 4 cases by analysing exceptionally long series expansions. In view of
the renewed interest on this yet unresolved problem, here we re-investigate the problem by
using a combination of Monte Carlo renormalization group and finite-size scaling analyses,
thus refining the simple Monte Carlo study of [12].

The outline of this paper is as follows. A summary of past works and the current status
of the problem are described in section 2. The present approach is outlined in section 3,
and the results of our findings are presented in section 4.

2. Results to this date

In 1979, on the basis of a reasonable extension of known results for the triangular lattice,
one of us [10] proposed a conjecture on the critical condition for the Kagomé Potts model.
The expression, which we shall refer to as the Wu conjecture, reads

w6+ 6w5+ 9w4− 2qw2− 6q2w − q3 = 0 (Wu) (4)

wherew = p/(1−p) = eK −1. The Wu conjecture is actually more general and applies to
the triangular Potts model with both pair and triplet interactions which can be ferromagnetic
and/or antiferromagnetic. While it has subsequently been shown by Enting and Wu [16] that
the conjecture cannot hold in a regime where the pair interaction is highly antiferromagnetic,
it still needs to be tested, however, whether the Wu conjecture holds in the ferromagnetic
regime.

An alternate conjecture of the Kagomé Potts critical point was proposed in 1982 by
Tsallis [11]†. Tsallis conjectured the critical condition in the ferromagnetic regime to be

1+ (q − 1)u3

u+ u2+ (q − 2)u3
= 2 cos

[
1

3
cos−1

(q
2
− 1

)]
q 6 4 (Tsallis) (5)

whereu = p/[1 + (q − 1)(1− p)]. Since both the Wu and Tsallis conjectures yield the
exact criticalpc for q = 2, the relative merit of the two conjectures can be judged only by
comparing with results for other values ofq.

† [11] contains a misprint. The exponent1
2 in the first line of (6′) should be deleted.
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In 1994, using the method of a histogram Monte Carlo renormalization group proposed
by CKH [17, 18], we have evaluated the critical point for the Kagomé Potts model
numerically [12]. The method of analysis used in [17, 18] is a simple sampling Monte
Carlo approach. While the results suggested that the Wu conjecture works better than the
Tsallis conjecture, the standard deviations incurred were too large to draw a definitive
conclusion. Very recently, Ziff and Suding [14] carried out a highly accurate Monte
Carlo simulation of bond percolation for the Kagomé lattice, theq = 1 version of
the correlated percolation problem, and obtained a highly accurate percolation threshold
pc = 0.524 4053(3). Subsequently, Jensenet al [15] analysed extremely long series
expansions for theq = 3, 4 Kagoḿe lattice obtained in atour de forceapplication of the
finite-lattice method and its extension, leading to a determination ofpc within an accuracy
of 0.01%. These studies confirm that the Wu conjecture works better than the Tsallis
conjecture, in addition to providing highly accurate determinations of the critical point. The
purpose of this paper is to provide an independent assessment of the accuracy of the Wu
conjecture.

3. A renormalization group and scaling analysis

Our numerical determination of the Potts critical pointpc is a combination of the Swendsen–
Wang cluster Monte Carlo method [19], the cell-to-cell renormalization group [17, 18, 20],
and the finite-size scaling analysis [21]. Due to the nature of our procedure which is most
suitable for investigating second-order transitions, we confine our studies toq 6 4.

The cluster Monte Carlo method developed by Swendsen and Wang is an importance-
sampling Monte Carlo method which is effective for improving standard deviations. As
in all prior investigations, the determination of the criticalpc is effected by considering a
latticeG of linear dimensionL, and a numerical determination of the existence probability

E(L, p, q) = Z−1
∑′

G′⊆G
π(G′;p, q) (6)

where the prime over the summation denotes that it is taken over subgraphs in which there is
at least one cluster spanning the lattice vertically. For this reason, the existence probability
has also been termed the crossing probability by Kesten [22] and the spanning probability
by Ziff [23].

We use the Swendsen–Wang cluster Monte Carlo method to simulate the existence
probability (6) for various linear sizesL. This is followed by an application of the cell-to-
cell renormalization group transformation [17, 18, 20]

E(L′, p′, q) = E(L, p, q) (7)

connecting two cells of linear sizesL′ andL, where we takeL′ = L/2. The transformation
(7) yields a renormalized bond occupied probabilityp′ as a function ofp. An estimate of
the critical probabilitypc(L) for a givenL is then made by determining the fixed point of
this transformation, namely, the solution of the equation

E[L/2, pc(L), q] = E[L,pc(L), q]. (8)

Finally, the critical probabilitypc(∞) for an infinite lattice is extracted by using the finite-
size scaling relation [21]

pc(∞)− pc(L) ∝ L−1/ν (9)
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Figure 1. An 8×4 Kagoḿe lattice with periodic boundary conditions. Full circles denote lattice
sites; open circles denote repeated sites.

Table 1. Numerical estimates of the critical pointspc(L). Numbers in parentheses denote
uncertainties attached to the last digits.

q pc(16) pc(32) pc(64) pc(128)

1 0.524 13(1) 0.524 38(2) 0.524 40(2) 0.524 41(2)
2 0.607 07(2) 0.606 86(5) 0.606 71(4) 0.606 69(2)
3 0.652 74(2) 0.652 48(4) 0.652 41(2) 0.652 35(1)
4 0.683 45(6) 0.683 27(2) 0.683 20(2) 0.683 18(1)

Table 2. Numerical estimates of the critical probability. The Tsallis [11] and Wu [10]
conjectures; the King–Wu lower boundpb [13]; Ziff–Suding [14]; Jensen [15]; this work.

q pb Tsallis Wu Ziff–Suding Jensenet al This work

1 0.517 0.522 372 07 0.524 429 71 0.524 405 3(3) 0.524 41(1)
2 0.597 0.606 680 11 0.606 680 11 0.606 62(8)
3 0.641 0.653 932 82 0.652 327 40 0.652 12(5) 0.652 32(7)
4 0.672 0.685 967 83 0.683 127 34 0.683 15(5) 0.683 17(2)

whereν is the correlation exponent 1,5
6, and 2

3 for, respectively,q = 2, 3, 4 [4]. Forq = 1,
we adopted the Aharony–Hovi scaling relation [24]

pc(∞)− pc(L) ∝ L−0.85−1/ν (10)

whereν = 4
3.

4. Numerical results

We evaluate the existence probabilityE(L, p, q) by carrying out Monte Carlo simulations
on a Kagoḿe latticeG of linear sizeL with periodic boundary conditions. The example of
an 8× 4 lattice is shown in figure 1.

We choose a set ofn bond occupied probabilities,pi , i = 1, 2, . . . , n, in the
neighbourhood of the expected critical pointpc, and for eachpi carry out 16 independent
Swendsen–Wang cluster Monte Carlo simulations. The existence probability is evaluated in
each simulation after 105–107 Swendsen–Wang iterations, and using the 16 sets of data we
calculate the existence probabilityE(i) and the corresponding standard deviationδE(i). The
n discrete values ofE(i) and the associated standard deviations are next fitted to a quadratic
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Figure 2. Monte Carlo data and the linear regression fit of the existence probability for five
different lattice sizes as indicated. (a) q = 1, (b) q = 2, (c) q = 3, (d) q = 4.

polynomial

a0+ a1p + a2p
2 (11)
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Figure 2. (Continued)

using the Linear Regression package in Mathematica 3.0. This determines the parameters
a0, a1 anda2, and the associated uncertaintiesδa0, δa1 and δa2. Using these numbers the
critical probabilitypc(L) and the associated uncertainty are determined from (8) for eachL.
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Figure 3. Results of finite-size scaling analyses for (a) q = 1 (b) q = 2 (c) q = 3 and
(d) q = 4. Data points are denoted by open circles, and the extrapolated critical pointpc(∞),
is denoted by the full circle.

Our computer program is capable of studying theq-state Potts model for any positive
integer q, including q = 1, which corresponds to the bond percolation model. We
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Figure 3. (Continued)

have carried out Monte Carlo simulations for systems of sizesL × L/2 for L =
16, 32, 64, 128, 256 for q = 1, 2, 3, 4. The critical point, which is the solution of the
renormalization group equation transforming a 2L × L system to aL × L/2 system as
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Figure 4. Critical point pc as a function ofq. Present results are compared with the Wu and
Tsallis conjectures and the King–Wu lower bound.

indicated in (8), ispc(L). Results obtained in this way are given in table 1 and shown
graphically in figures 2(a)–(d).

We next extract the critical pointpc(∞) using the finite-size scaling relation (9) and
the least-squares method of [25] for fitting the scaling relation (9). The results are shown
in figures 3(a)–(d), and the extrapolated values ofpc(∞) and the associated uncertainties
are given in table 2 and shown in figure 4. Since forq = 1 the scaling behaviour manefits
itself only for largerL, we have used only last three data point in the first row of table 2 in
the fitting. The statistical analysis of [25] dictates that the probability that theexactcritical
point lies within the uncertainty ranges of table 2 is 0.683.

In table 2 and figure 4 we also show results ofpc deduced from the Wu and Tsallis
conjectures as well as the King–Wu rigorous lower boundpb [13] given by

q[n3+ 3(q + 2w)n2+ (q2+ 3qw + wn)(3n+ q)] = wn4 (12)

wheren = w(w + 3) andw = pb/(1− pb).
It is clear that the Wu conjecture is extremely accurate, confirming earlier findings

[12, 15]. In fact, it appears that the consideration of our results alone does not rule out the
possibility that the Wu conjecture is actually exact. Comparison with the results of Jensen
et al [15], our determination ofpc for q = 4 is consistent with theirs with a slightly better
accuracy. But our value ofpc for q = 3 does not coincide with theirs within the limits of
respective deviations. Further clarification of this discrepancy, albeit slight, is needed.
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5. Summary

In summary, we have used a combination of Monte Carlo simulations, cell-to-cell
renormalization groups, finite-size scalings and a linear regression analysis to determine
the critical point for the Kagoḿe Potts model. Other than a slight discrepancy with the
finding of Jensenet al [15] for q = 3, our results agree well with prior highly accurate
determinations ofpc. Our numbers also support the conclusion that the Wu conjecture (4)
is extremely accurate as an approximation to the exact Kagomé Potts critical point.
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